The Great Pyramid's Hidden Constant: The 239c Count

Charles William Johnson

Earth/matriX:
Science in Ancient Artwork
P.O. Box 231126

New Orleans, Louisiana © 2001 Charles William Johnson
 ISBN 1-58616-209-8

The Cross-Sectional Base of the Great Pyramid

Presentation

The green square measures 169 feet on each of its sides. The 169c lies within the progression of the Meso-American number, 2028c, from the Legend of the Four Worlds (or, the Fifth Sun Legend).

The red diagonal line of the 169c green square measures therefore, 239.002092 feet.

We have divided the base of the Great Pyramid of Giza along the lines illustrated herein, which produce the previous measurements. The side measurement of the Great Pyramid results in the average measure cited: $\mathbf{7 5 5 . 7 9 0 9 7 6 4}$ feet; a measurement that was offered by the Egyptian Government in 1925: 755.79 feet.

The Cross-Sectional Base of the Great Pyramid

By employing the diagonal lines of the green square, 239.002092 feet, we are therefore able to compute many other interconnecting lines and sides of triangles within the cross-section of the base of the Great Pyramid.

The values of various other lines and sides of internal triangles are derived from computations related to various square roots of numbers.

Through the use of the square roots of various numbers, we are able to project measurements of equilateral, right, isosceles and scalene triangles.

We suspect that the ancients may have employed a similar method of computation along such lines.

The Cross-Sectional Base of the Great Pyramid

Another outstanding relationship derived from this study, concerns that between the numbers relating to the side measurement of the Great Pyramid (755.7909764 feet), and the measurement of the internal triangles and squares related to the geometry of the base of the Great Pyramid.

The numbers related to the internal triangles and the cited green square are generally related to the multiples of the numbers offered in the Meso-American Legend of the Four Worlds or, the Fifth Sun: 676c and 2028c.

To date, we have not found a number or multiple expression of the figure 239c. Yet, we suspect that soon, we shall be encountering such values given the fact that now our attention has been directed towards this number.

The Cross-Sectional Base of the Great Pyramid: 755.7909764 Feet

Meso-American
Legend of the
Four Worlds
Year Count
$\mathbf{1 6 9}$
$\mathbf{3 3 8}$
$\mathbf{5 0 7}$
$\mathbf{6 7 6}$
845
1014
1183
1352
1521
1690
1859
$\mathbf{2 0 2 8}$
© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

Internal Triangles and Squares: A Hypothetical Design

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:
The Diagonal Base Line: A Theoretical Posit: 239.002092 Feet
239.002092 feet
measures the
diagonal base
line of
the $169-$ foot
square.

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

A Theoretical Computation: The 338-Foot Baseline

The diagonal line of 239.002092 feet of the green square, offers a means of analysis for various lines within the triangles drawn on the cross-sectional base of the Great Pyramid.

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

A Theoretical Computation: The 338-Foot Baseline

The diagonal line times the square root of two yields the base line of the 338-foot based equilateral triangle; a progression of triangles.
$239.002092 \times \sqrt{2}=338$

239.002092 diagonal line

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid and $\sqrt{5}$ Its Diagonal Line: A Theoretical Computation: 534.4249246 Feet

The diagonal line times the square root of five yields half the [diagonal line of the Great Pyramid's base: 534.4249246 feet.

$239.002092 \times \sqrt{ } 5=534.4249246$

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid and

Its Half-Base Diagonal Line: A Theoretical Computation: 676 Feet

The diagonal line times the square root of eight yields the partial diagonal line of half of the Great Pyramid's base: 676 feet.

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

Internal Triangles: A Theoretical Computation

The diagonal line times the square root of ten yields the side measurement of the Great Pyramid's base: 755.7909764 feet.

\square

$239.002092 \times \sqrt{ } 10=755.7909764$

755.7909764

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

A Summary of Theoretical Computations: $\quad \sqrt{ } 2 \cdot \sqrt{ } 5 \cdot \sqrt{8} \cdot \sqrt{ } 10$
The diagonal line times various square root numbers yields different lines within the triangles posited on the base of the Great Pyramid.

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:
A Summary of Theoretical Computations: $\sqrt{2} \cdot \sqrt{ } \cdot \sqrt{ } \cdot \bullet \sqrt{ } 10$
The diagonal line times various square root numbers yields different lines within the triangles posited on the base of the Great Pyramid.
The diagonal line
239.002092 Feet, of the
green square,
when multiplied against
the square root numbers
shown, produce the
corresponding lines
illustrated here.
239.002092

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

The Diagonal Baseline: A Theoretical Computation

The diagonal line times the square root of twenty yields the diagonal measurement of the Great Pyramid's base: 1068.849849 feet.
/
$239.002092 x \quad \sqrt{20}=1068.8498491068 .849849$

239.002092
$\square \sqrt{20}$

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:
Perimeter Great Pyramid: A Theoretical Computation

The Cross-Sectional Base of the Great Pyramid: Perimeter: Great Pyramid / A Theoretical Computation

The Cross-Sectional Base of the Great Pyramid:

Internal Triangles and Squares: A Hypothetical Design

Each green square is 169 feet per sidle.
© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid: Internal Triangles: A Theoretical Computation
The diagonal line times the square root of 4.5 yields the diagonal measure illustrated between the squares: 507 feet.
We have adjusted the 4.5 figure in order to achieve a whole number expression for 507c.

$239.002092 \times \sqrt{ } 4.500000001=507$

239.002092

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

Additional Internal Measures: Interconnecting Lines: 507 Feet

 $4 \times 253.5=$ The Meso-American 2014 Legend of the Fourd Worlds (Suns) 2028 years

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:
Internal Measures: A Theoretical Computation: 609.3381656

In this example, we employ the diagonal line of the green square: 239.0020292 Feet

6.5, 13, 26, 52, 104...
© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid: Internal Measures: Interconnecting Lines: 609.3381656 Feet

In this example, we employ half the diagonal line of the green square: 119.501046 Feet
$119.501046 \times \sqrt{ } 26=609.3381656$
119.501046 half of the diagonal line
© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

Internal Triangles: A Theoretical Computation
$4 \times 304.6690828=1218.676331$ doubles to
...
1.674935996^{14}

Neutron mass: 1.67492716

The Cross-Sectional Base of the Great Pyramid:

Internal Triangles: A Theoretical Computation
$\mathbf{1 . 6 7 4 9 3 5 9 9 6} / 304.6690828=549.7558138$
$3 \times 549.7558138=1649.267442$

Sothic 1649.457812

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:
Internal Measures: A Theoretical Computation

8.5, 17, 34, 68, 136...
© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid: Internal Triangles: A Theoretical Computation

$239.002092 \times \sqrt{ } 8.5=\underline{696.8048506}$

$239.002092 \times \sqrt{ } 6.5=\underline{609.3381656}$

8.5, 17, 34, 68, 136...
© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:
Internal Triangles: The Pythagorean Theorem
$169^{2} \times 676^{2}=\underline{696.8048507}$
© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

Internal Triangles and Squares: A Hypothetical Design

The lines that may be derived from the computations as illustrated are a function of the square roots of certain numbers as illustrated in this essay.

© 2001 Charles William Johnson All rights reserved.

The Arrowhead

Total sum 2187.581953 Aztec Calendar Center Number: 2187

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

Profile View: A Hypothetical Design

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

Profile View: A Hypothetical Design
51.5-degree angle of inclination Inverted Pyramid

© 2001 Charles William Johnson All rights reserved.

The Cross-Sectional Base of the Great Pyramid:

Internal Triangles and Squares: A Hypothetical Design

The Star

© 2001 Charles William Johnson All rights reserved.

End File
 www.earthmatrix.com

