Earth/matriX SCIENCE IN ANCIENT ARTWORK

The Conversion of Degrees, Radians

$$
\begin{aligned}
& \text { and the Diametian } \\
& \text { in Ancient Reckoning Counts }
\end{aligned}
$$

Earth/matriX SCIENCE IN ANCIENT ARTWORK
 New Orleans, Louisiana

September, 2001
©2001 Copyrighted by Charles William Johnson. All rights reserved. ISBN 58616-218-7

The Conversion of Degrees, Radians and the Diametian in Ancient Reckoning Counts

Charles William Johnson

ISBN 58616-218-7

©2001 Copyrighted by Charles William Johnson
Printed in USA

Jorge Luna, Director

Earth/matriX SCIENCE IN ANCIENT ARTWORK

P.O. Box 231126

New Orleans, Louisiana
September, 2001
www.earthmatrix.com
www.the-periodic-table.com

With Profound Sadness
 To the Big Apple With Great Optimism

Earth/matriX: SCIEnCE in ancient artwork

```
The Conversion of Degrees, Radians and the Diametian
in Ancient Reckoning Counts
```


Presentation

In this essay, we shall present analyses of the ancient reckoning counts in relation to the procedures employed for converting degrees to radians and radians to degrees. The reader may be as surprised as this author to find a direct correlation between ancient reckoning counts and the conversion factors of degrees and radians.

We shall illustrate how the use of the diametian (two radians) improves the conceptual nature of the geometrical problematique in relation to the analyses of Unit Circles.

Part: General Background and Commentary

The conversion of degrees and radians:

$$
\begin{gathered}
180 / \pi=57.29577951^{\circ}(\text { one radian }) \\
180 / \text { radian }=3.141592654(\mathbf{p i})
\end{gathered}
$$

The interesting point for the ancient reckoning system is that these two expressions are mediated by the number 180 , which pertains to half the number of degrees in a circle as we know it today $\left(360^{\circ}\right)$. Many ancient reckoning counts are based upon the $9,18,36 \ldots$ count, and therefore relate easily to these particular formulae, as we shall observe in this essay.

The conversion of degrees and radians is generally suggested by way of two formulae, and inversely thereof:

$$
\begin{aligned}
& 1^{\circ}=\pi \mathrm{rad} / 180 \\
& 1 \mathrm{rad}=(180 / \pi)^{\circ}
\end{aligned}
$$

To convert from degrees to radians, multiply by

π rad / 180

To convert from radians to degrees, multiply by

To convert from degrees to radians,
 Degrees \div Radian $=$ Radian (\%) ($\left.3^{\circ} / 57.29577951=.0523598776\right)$
 To convert from radians to degrees
 (\#) Radians \times Radian $=$ Degrees ($3 \times 57.29577951=171.8873385^{\circ}$)

Defining The Diametian

360 / $3.141592654=114.591559$ (diametian)

A Unit Circle in our mind would have a diameter of 114.591559 when the circumference is divided into 360 degrees!

$\mathbf{3 . 1 4 1 5 9 2 6 5 4} \times \mathbf{1 1 4 . 5 9 1 5 5 9 0 1 1}=\mathbf{3 6 0}$

(pi times diametian $=360)$
In a Unit Circle of this nature, the Radius would be equal to one radian.

360 / $3.141592654=114.591559$ (diameter)

A 360-degree circle

Radius = Radian: 57.29577951

In a Unit Circle of this nature, the Radius would be equal to one radian.

To convert from Degrees to Diametians (Two Radians)

Degrees \div Diametian $=$ Diametian (\%)

 $\left(3^{\circ} / 114.591559=.0261799388\right)$To convert from Diametians to Degrees
(\#) Diametians \times Diametian $=$ Degrees ($3 \times 114.591559=343.7746677^{\circ}$)

2π Radius $=$ circumference

$$
2(\pi) .5=3.141592654
$$

The circumference of a circle whose diameter is $\mathbf{1 . 0}$

$$
2(\pi) 1.0=6.283185307(2 p i)
$$

The circumference of a Unit Circle in Geometry
whose diameter of 2.0

The Length of the Arc (denoted by s) Intercepted by a Central Angle of Any Size in a Circle of Any Radius

Computations in Degrees:
$s=$ angle $/ 360 \times$ Circumference
$s=$ angle $/ 360 \times 2 \pi$ Radius

Computations in Radians:

$s=\mathrm{aR}$ (simply, the angle multiplied by the radius)
©2001 Copyrighted by Charles William Johnson

Circumference 3.141592654

Unit Circles

Circumference 2Pi

Diameter: 2.0

Unit Circles

Radians

Some commonly cited angles in radians: $5 \underline{\mathbf{5 7 . 2 9 5 7 7 9 5 1}}$
$360^{\circ}=2 \mathrm{pi} \quad$ radians
$270^{\circ}=3 \mathrm{pi} / 2$ radians
$180^{\circ}=$ pi \quad radians
$90^{\circ}=\mathrm{pi} / 2 \quad$ radians
$75^{\circ}=5 \mathrm{pi} / 12$ radians
$60^{\circ}=\mathrm{pi} / 3$ radians
$45^{\circ}=\mathrm{pi} / 4 \quad$ radians
$30^{\circ}=$ pi/6 radians
$15^{\circ}=\mathrm{pi} / 12$ radians
$1^{\circ}=$ pi/180 radians

Diame tians
Some commonly cited angles in diametians: 114.591559
$360^{\circ}=$ pi $\quad \times \quad$ diametian
$270^{\circ}=3 / 4$ pi \times diametian
$180^{\circ}=1 / 2$ pi $\times \quad$ diametian
$90^{\circ}=1 / 4$ pi $\times \quad$ diametian
$75^{\circ}=5 / 24$ pi \times diametian
$60^{\circ}=$ pi/6 \times
$45^{\circ}=\mathrm{pi} / 8 \times$
$30^{\circ}=\mathbf{p i} / 12 \times$
$15^{\circ}=\mathrm{pi} / 24 \times$
$1^{\circ}=\mathrm{pi} / 360 \times$ diametian diametian diametian diametian diametian

Commonly cited angles in diametians: 114.591559		
$360^{\circ}=1 \mathbf{p i}$	\times	114.591559
$270^{\circ}=3 / 4 \mathbf{p i}$	\times	114.591559
$180^{\circ}=1 / 2 \mathbf{p i}$	\times	114.591559
$90^{\circ}=1 / 4 \mathbf{p i}$	\times	114.591559
$75^{\circ}=$	$1 / 4.8 \mathbf{p i} \times$	114.591559
$60^{\circ}=1 / 6 p i$	\times	114.591559
$45^{\circ}=1 / 8 \mathbf{p i}$	\times	114.591559
$30^{\circ}=$	$1 / 12 \mathbf{p i} \times$	114.591559
$15^{\circ}=1 / 24 \mathbf{p i} \times$	114.591559	
$1^{\circ}=1 / 360 \mathbf{p i} \times$	114.591559	

The Unit Circle is
based upon a diameter of 114.591559, whereby the circumference is exactly 360. By employing the diametian (114.591559) instead of the radian measure, one is simply emphasizing the concept of the "diameter" over that of "two radians".
The object is to draw attention in the computations to the length of the diameter. The formulae are thus relational to the number of degrees cited.

Angles commonly cited in Geometry Textbooks in Radians. Unit Circle for Formulae is Actually an Half Circle ($\mathbf{1 8 0} \mathbf{0}^{\circ}$)

$\mathbf{3 6 0}^{\circ}=\mathbf{2}$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{5 7 . 2 9 5 7 7 9 5 1}$
$\mathbf{2 7 0}^{\circ}=\mathbf{3 / 2}$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{5 7 . 2 9 5 7 7 9 5 1}$
$\mathbf{1 8 0}^{\circ}=\mathbf{1 . 0}$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{5 7 . 2 9 5 7 7 9 5 1}$
$\mathbf{9 0}^{\circ}=\mathbf{1} / 2$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{5 7 . 2 9 5 7 7 9 5 1}$
$\mathbf{7 5}^{\circ}=\mathbf{5 / 1 2}$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{5 7 . 2 9 5 7 7 9 5 1}$
$\mathbf{6 0}^{\circ}=\mathbf{1 / 3}$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{5 7 . 2 9 5 7 7 9 5 1}$
$\mathbf{4 5}^{\circ}=\mathbf{1} / 4$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{5 7 . 2 9 5 7 7 9 5 1}$
$\mathbf{3 0}^{\circ}=\mathbf{1 / 6}$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{5 7 . 2 9 5 7 7 9 5 1}$
$\mathbf{1 5}^{\circ}=\mathbf{1 / 1 2}$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{5 7 . 2 9 5 7 7 9 5 1}$
$\mathbf{1}^{\circ}=\mathbf{1 / 1 8 0}$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{5 7 . 2 9 5 7 7 9 5 1}$

Note the complexity in recognizing the number of degrees and the corresponding fractional expression angle/180 by using the radian instead of the diametian (next slide).

Unit Circle 1.0 as $360^{\circ}:$ Diametian: $\underline{114.591559}$

360°	$=1.0$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times
$\mathbf{2 7 0}^{\circ}=3 / 4$	\times	$\mathbf{1 1 4 . 5 9 1 5 5 9}$		
$\mathbf{1 8 0}^{\circ}=1 / 2$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{1 1 4 . 5 9 1 5 5 9}$
$\mathbf{9 0}^{\circ}=1 / 4$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{1 1 4 . 5 9 1 5 5 9}$
$\mathbf{7 5}^{\circ}=1 / 4.8$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{1 1 4 . 5 9 1 5 5 9}$
$\mathbf{6 0}^{\circ}=\mathbf{1 1 4 . 5 9 1 5 5 9}$				
$\mathbf{4 5}^{\circ}=1 / 8$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{1 1 4 . 5 9 1 5 5 9}$
$\mathbf{3 0}^{\circ}=1 / 12$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{1 1 4 . 5 9 1 5 5 9}$
$\mathbf{1 5}^{\circ}=1 / 24$	\times	$\mathbf{3 . 1 4 1 5 9 2 6 5 4}$	\times	$\mathbf{1 1 4 . 5 9 1 5 5 9}$
$\mathbf{1}^{\circ}=1 / 360$	\times	$\mathbf{3 . 1 4 1 5 9 6 5 4}$	\times	$\mathbf{1 1 4 . 5 9 1 5 5 9}$
$\mathbf{N}^{\circ}=$				

Note how the ease of recognizing the number of degrees and the corresponding fractional expression angle/360 by using the diametian instead of the radian.

Conversion Examples

Conversion examples using the 756c Kemi count:

$$
\text { Degrees/radians: } \quad 1^{\circ}=\pi \mathrm{rad} / 180
$$

$756^{\circ} / 180=4.2 \times \mathrm{pi}=13.19468915$ radians

Radians/degrees: $1 \mathrm{rad}=(180 / \pi)^{\circ}$
$756 \mathrm{rad} \times 180=136080 / \mathrm{pi}=43315.60931$ degrees

Consider adjustment:
$756 \mathrm{rad} \times 180=136080 / 3.15=43200$ Consecration

Conversion examples of the 1366560 c Maya count:

$$
\text { Degrees/radians: } \quad 1^{\circ}=\pi \mathrm{rad} / 180
$$

$$
1366560^{\circ} / 180=7592
$$

$7592 \times \mathrm{pi}=\underline{23850.97143}$ radians

$$
\text { Radians/degrees: } 1 \mathrm{rad}=(180 / \pi)^{\circ}
$$

$1366560 \mathrm{rad} \times 180=245980800$

$245980800 / p i=78298120.45$ degrees

Conversion examples of the 1366560 c Maya count

 and the 1959552c Nineveh Count:$$
\text { Degrees/radians: } \quad 1^{\circ}=\pi \mathrm{rad} / 180
$$

$$
1366560^{\circ} / 180=7592
$$

$$
7592 \times \mathrm{pi}=\underline{23850.97143} \text { radians }
$$

23850 doubles to
195379200-195955200 = 576000 (MLC fractal)
$7592 \times 2=15184$ (maya counts)

Conversion examples (Sothic 1649.457812):

Degrees/radians: $\quad 1^{\circ}=\pi \mathrm{rad} / 180$ $\underline{1649.457812^{\circ}} / 180=9.163654511$
 $\underline{9.163654511} \times \ldots$ pi $=28.78846969$ radians

Consider adjustment:

$9.163654511 / 28.8=.3181824483$
1/.3181824483 = ca. reciprocal of pi, 3.142850919 as reciprocal of seven, 3.142857
The reciprocal of pi, instead of pi, may be employed to compute whole numbers.

Conversion examples (13c):

 Degrees/radians: $1^{\circ}=\pi \mathrm{rad} / 180$$$
13^{\circ} / 180=.072222222
$$

$.072222222 \times$ pi $=.2268928028$ radians

 $.072222222 / .2268=.3184401332$In this case the ancient 13c would represent degrees and the ancient 2268c of Nineveh would represent the radians.

13 degrees equals ca. . 2268 radians

Conversion examples (25956c Maya Precession):
 Degrees/radians: $\quad 1^{\circ}=\pi \mathrm{rad} / 180$
 $\underline{25956}{ }^{\circ} / 180=144.2 \times \underline{p i}=453.0176606$ radians

$$
144.2 / 453.6=.3179012346
$$

In this case the ancient mayal44c would represent degrees and the ancient 4536c of Nineveh would represent the radians.

144 degrees equals ca. 453.6 radians

3.141592654 Pi (π)
 57.29577951 Radian

The relationship of the three numbers shown above relates to the conversion of degrees and radians of a circle. Yet, we may wonder how would they relate to the different ancient reckoning counts. Take two ancient Kemi counts: 756 and 42. Let us remember that 756c is often given as the side measurement of the Great Pyramid of Giza.

$$
756 / 180=42
$$

```
756 / 180 = 42
```


$756 / 3.141592654=240.642274 / 57.29577951=4.2$

From the previous computation one may observe how the two Kemi counts are related as Pi and the Radian. Also, one may realize why the ancients may have disliked fractions, such as, 240.642274 which suggests the $\mathbf{6}, 12,24$ c... ancient reckoning constant count.

$756 / 3.15=240.0 / 57.14285714=4.2$

Fractionless reckoning counts may be obtained easily within the computation by changing pi to the ancient 3.15 number and employing the reciprocal of seven number for the radian.

$756 / 3.15=240.0 / 57.14285714=4.2$

In this manner, one is able to obtain a relationship among three distinct ancient reckoning counts by way of two geometrical constants: pi and the radian. It is difficult to imagine that the ancients chose three distinct reckoning counts simply out of happenstance, when we observe their direct relationship to the geometrical constants. In other words, it is easy to understand that 756 c and 42 c are related to the $\mathbf{1 8 0}$ count, but then, to observe their relationship to yet another third count, by way of the two geometrical constants defies logic.
If the reciprocal of seven appears bothersome, we simple invert it to its own reciprocal $(175,350,700 \ldots)$:

$$
756 / 3.15=240.0 \times \underline{0175}=4.2
$$

The Conversion of Degrees, Radians and the Diametian

360 / $3.141592654=114.591559$ (diametian)

A Unit Circle in our mind would have a diameter of 114.591559 when the circumference is divided into 360 degrees!

$\mathbf{3 . 1 4 1 5 9 2 6 5 4} \times \mathbf{1 1 4 . 5 9 1 5 5 9 0 1 1}=\mathbf{3 6 0}$

(pi times diametian $=\mathbf{3 6 0}$)
In a Unit Circle of this nature, the Radius would be equal to one radian.

| $180 / 3.141592654=57.29577951 / 57.29577951$ | $=1.0$ |
| :--- | :--- | :--- |
| radius | radian |

$360 / 3.141592654=114.591559 / 57.29577951=2.0$
degrees

Now, let us suppose that the ancients divided a circle into as many degrees or divisions (segments) as they required for their computations. Let us suppose that they divided a circle into 756c degrees, instead of the $\mathbf{3 6 0}$-degree circle that we have inherited today.
756 / $3.141592654=240.642274$ / 57.29577951 = 4.2 degrees
(4.2 radians) radians
$240.642274 \times 114.591559=27575.57334 /$ radian $=\frac{481.2845479}{8.4 \text { radians }}$
4.2 radians $\times 2$ radians $=$

```
756 / 3.141592654 = 240.642274 / 57.29577951 = 4.2
degrees

Note the pi-like relationship to the projected height of the Great Pyramid of Giza ( \(\mathbf{4 8 1 . 5}\) feet), which would represent theoretically at least, 8.4 radians.

\section*{Selected Historically Significant Reckoning Counts in Relation to the Conversion of Degrees and Radians}

The fistorically significant counts that we have selected on the following slides are related ultimately as of the 18 count ( 36 c). One merely has to divide one of the extreme terms of the following equations by its corresponding extreme term, in order to visualize this particular relationsfip. Yet, the significant point is the manner in which the counts relate to the pi and the radian expressions and the third or middle count posted within each equation. The middle term of the equation may be read as \(x\) radians or, as the length of the diameter for the circumference of each corresponding circle.

\section*{\(1872000 / 3.141592654=595876.1069 / 57.29577951=10400\) degrees 5200 diametians radians}
\begin{tabular}{ll}
\(1872000 / 3.141592654\) \\
circumference
\end{tabular}\(=\)\begin{tabular}{l}
\(595876.1069 / 57.29577951\) \\
diameter
\end{tabular}\(\quad 10400\)

\section*{The Maya Long-Count Period (1872000) and the Mesoamerican Century (104c)}
\(1872000 / 3.141592654=595876.1069 / 57.29577951=10400\)
\(1872000 / 57.29577951=32672.5636\) radians radians

The Sacred Seven Count (7c) and the Mesoamerican Count (3888c)
\(7 / 3.141592654=2.228169203 / 57.29577951=.0388888889\)
\(7 / 57.29577951 \equiv .1221730476\) radians radians

\section*{The Consecration Count (432c) and the Constant Count (24c)}
\(432 / 3.141592654=137.5098708 / 57.29577951=2.4\) \(432 / 57.29577951=7.53822369\) radians radians

\section*{The Precessional Great Cycle (25920c) and the Maya Long-Count Fractal (144c)}
\begin{tabular}{|l|l|l|}
\hline \(25920 / 3.141592654=8250.59225 / 57.29577951=\) & 144 \\
\(25920 / 57.29577951=452.3893421\) radians & radians
\end{tabular}

The Maya Precession Count (25956c) and
the Adjusted Maya Long-Count \((72.1 \mathrm{c}, 144.2 \mathrm{c})\)
25956 / \(3.141592654=8262.051406 / 57.29577951=144.2\) \(25956 / 57.29577951=453.0176607\) radians radians

\section*{The Maya Long-Count (144c) and the Constant Number Count (1, 2, 4, 8c)}
\(144000 / 3.141592654=45836.62361 / 57.29577951=800\) \(144000 / 57.29577951=2513.274123\) radians radians

Half the Maya Long-Count Period (936000c) and the Mesoamerican Calendar Round (52c)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(936000 / 3.141592654=297938.0535 / 57.2957951=5200\) \(936000 / 57.29577951=16336.2818\) radians radians}} \\
\hline & & \\
\hline
\end{tabular}

The Nineveh Count (2268c) and
the Constant Number Series ( \(63 \mathrm{c}, 126 \mathrm{c}\) )
\(2268 / 3.141592654=721.9268219 / 57.29577951=c\)
\(2268 / 57.29577951=39.58406744\) radians \(\quad\) radians

\section*{The Mesoamerican Count (2187c) and the Cuicuilco Count (1215c)}
\(2187 / 3.141592654=696.1437211 / 57.29577951=12.15\) 2187 / \(57.29577951=38.17035074\) radians radians

The Conversion of Degrees and Radians

\section*{The Adjusted Year Count (365c) and} the Mesoamerican Legend of the Fifth Sun Count (2028c)

\author{
36504 / \(3.141592654=11619.58409 / 57.29577951=2028\)
} 36504 / 57.29577951 = 637.1149902 radians radians

The Maya Companion Number (1366560c) and the Calendar Round in Days (1898, 3796, 7592c)
\(1366560 / 3.141592654=434989.5581 / 57.29577951=7592\)
\(1366560 / 57.29577951=23850.97143\) radians radians

The Mesoamerican Count (7776c) and the Consecration Count (432c)
\(7776 / 3.141592654=2475.177675 / 57.29577951=43.2\) \(7776 / 57.29577951=135.7168026\) radians radians

The Conversion of Degrees and Radians

\section*{The Venus Day-Count (585c) and the Mesoamerican Thirteen Count (3.25, 6.5, 13c)}

\section*{585 / \(3.141592654=186.2112834 / 57.29577951=3.25\)} \(585 / 57.29577951=10.21017612\) radians radians

\section*{The Nineveh Number (1959552c) and the Mesoamerican Count (108864c)}

19595520 / \(3.141592654=6237447.741 / 57.29577951=108864\) \(19595520 / 57.29577951=342006.3427\) radians radians

The Maya Historical Count (1404000c) and the Mesoamerican Count \((39,78 c)\)

> 1404000 / \(3.141592654=446907.0802 / 57.29577951=7800\) \(1404000 / 57.29577951\) = 24504.4227 radians radians

\section*{To convert degrees to radians multiply by . 017453}
5198.00893 / pi = 1654.577631
\(5198.00893 / \mathrm{rad}=90.72237038\)
\(1654.577631+90.72237038=1745.300001\)
\(5198.00893 / 2=2599.004465\) precession
\(1654.577631 / \mathbf{9 0 . 7 2 2 3 7 0 3 8}=18.23781306\) 36.47562611

\subsection*{5198.009 | rad \(=90.7223716\)}
(9072, 4536, 2268)
\(5198.009 / \mathrm{pi}=1654.577653\) \(90.7223716+1654.577653=1745.300025\)
[To convert degrees to radians multiply by .017453]
\(360 \times .017453=2\) pi (6.28308)
2pi / \(360=.0174532925\) exact
pil180 = same

Sothic 1649.457812-1654.577653 \(=5.119841\) doubles to 81.917456 [kawil 819c + 1745c]

As one may discern from the previous analysis, there appears to exist a direct relationship between the ancient reckoning counts and the basic procedures in geometry. It seems difficult to imagine the possibility that the ancients chose their ancient reckoning counts outside of the posits of geometry. Ancient artwork reflects an infinite number of geometrical designs. It is not at all surprising to find a link between the ancient historically significant numbers, and the procedures within geometry. Coincidence no longer is involved, once one is able to predict and extrapolate computations in the manner that the ancient reckoning numbers achieve in relation to the posits of classical geometry.

\section*{\(\mathcal{E N} \mathcal{N} \mathcal{F} I \mathcal{L E}\)}

The Conversion of Degrees, Radians
\[
\begin{gathered}
\text { and the Diametian } \\
\text { in Ancient Reckoning Counts }
\end{gathered}
\]

\section*{Earth/matriX SCIENCE IN ANCIENT ARTWORK}

New Orleans, Louisiana
September, 2001
©2001 Copyrighted by Charles William Johnson ISBN 58616-218-7```

