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Abstract

In his paper, “The Distance of the Planets from the Sun and Their
Atmospheric Composition,” Charles William Johnson postulates the ex-
istence of a Phi pattern in planetary orbits. The conjecture hinges upon
the inclusion of Ceres as a dwarf planet. The author claims this inclusion
is necessary in order to properly represent the asteroid belt between Mars
and Jupiter, but fails to give a valid mathematical proof. We, the authors
of this paper, investigate the validity of Johnson’s work, and offer a math-
ematical proof based on regression analysis. Furthermore, we apply the
same analysis to the lunar orbits of Neptune, Uranus, and Saturn, as well
as the rings of Uranus. We believe this data analysis technique can also be
used to predict the location of undiscovered moons in our solar system, as
well as planets beyond Pluto.

1. Introduction

The existence of Phi patterns in nature has been a topic of great interest
for mathematicians, beginning with Leonardo of Pisa (1170 – 1250), who
first popularized the idea in a problem that he posed involving the growth
of a hypothetical rabbit population (Burton 289-294). Phi is related to the
Fibonacci sequence, {Fn }, where F1 = 1, F2 = 1, and Fn+2 = Fn+1+Fn
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for n ≥ 1, and is defined as lim
n→∞

Fn+1
Fn

(Bicknell-Johnson). Hence, the

Fibonacci numbers are:

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 . . .},
and Phi is an irrational number, which can be aproximated by 1.61803,
correct to five decimal places. The figure below illustrates the rapid con-
vergence of the sequence.

Figure 1

The Fibonacci sequence and the related Phi pattern have been observed
throughout nature. The sprouting of new shoots during the growth process
of various plants parallels the growth of Fibonacci’s hypothetical rabbit
population. This pattern can also be observed in the petals and seed heads
of certain flowers, as well as in the spiral growth pattern of pinecones and
nautilus shells (Knott).

For example, if one were to count the counterclockwise spirals created
by the seeds of a sunflower, the number would be a Fibonacci number
(Knott). Moreover, the number of clockwise spirals would be the previous
Fibonacci number, and hence the ratio of these numbers is an approxima-
tion of Phi (Knott). As the sunflower grows, the approximation improves!
The same phenomenon is also observed in pinecones (Knott).
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2. Analysis of Planetary Data

The spiral pattern associated with Phi can also be observed in space.
For example, the Milky Way is classified as a spiral galaxy (Morison and
Penston 37). It appears to have a spiral pattern that resembles the growth
pattern of pinecones, sunflowers, and nautilus shells (Harris). Therefore,
the question arises as to whether a Phi pattern can be observed in our solar
system.

Charles William Johnson postulates the existence of such a pattern in
“The Distance of the Planets from the Sun and their Atmospheric Com-
position.” The conjecture hinges upon the inclusion of Ceres as a dwarf
planet. Johnson claims this inclusion is necessary in order to properly rep-
resent the asteroid belt between Mars and Jupiter, but fails to give a valid
mathematical proof. Our research began with the development of such a
proof, based on regression analysis. The result was a data analysis tech-
nique which we then applied to the lunar orbits of Neptune, Uranus, and
Saturn, as well as the rings of Uranus.

We first analyzed the ratios of the distances from the sun of successive
planets (normalized to Mercury), without including data on Ceres (see Ta-
ble 1 and Figure 2). Using linear regression, with one-sigma error bars,
we found Jupiter to be an outlier. (Note that since multiplication is com-
mutative, dividing the distances in Column 2 of Table 1 by Mercury’s dis-
tance from the sun, and then calculating successive ratios of distances, is
equivalent to setting the first ratio in Column 3 to one, and calculating the
remaining ratios directly from the planetary distances.)

Planet Distance from Sun (km) Ratio

Mercury 57, 900,000 1
Venus 108, 200,000 1.868739
Earth 149, 600,000 1.382625
Mars 227, 900,000 1.523396
Jupiter 778, 600,000 3.416411
Saturn 1, 433, 500,000 1.841125
Uranus 2, 872, 000,000 2.003488
Neptune 4, 485, 100,000 1.561664
Pluto 5, 870, 000,000 1.308778

Mean 1.767358
Std. Dev. 0.653183

Table 1
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Figure 2

Using the linear regression equation established above,

y = .0312x+ 1.6112,

we predict the location of a “missing planet” between Jupiter and Mars,
recalculate the ratios of the distances of the planets from the Sun (normal-
ized to Mercury), and finally establish a new regression line (see Table 2
and Figure 3).

Planet Distance from Sun (km) Ratio

Mercury 57, 900,000 1
Venus 108, 200,000 1.868739
Earth 149, 600,000 1.382625
Mars 227, 900,000 1.523396
Estimate 402, 744,880 1.7672
Jupiter 778, 600,000 1.933234
Saturn 1, 433, 500,000 1.841125
Uranus 2, 872, 000,000 2.003488
Neptune 4, 485, 100,000 1.561664
Pluto 5, 870, 000,000 1.308778

Mean 1.619025
Std. Dev. 0.3211

Table 2
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Figure 3

Inclusion of a “missing planet” resulted in a mean normalized planetary
distance very close to Phi (1.619025). The location of the “missing planet”
is within the vicinity of Ceres, thus justifying Johnson’s inclusion of Ceres
in his data analysis (see Figure 4).

Figure 4
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3. Analysis of Neptune

We began our study of lunar orbits with Neptune. The data pertain-
ing to the thirteen known moons of Neptune (see Table 3) was collected
by NASA (Williams, “Neptunian Satellite Fact Sheet”). Due to Neptune’s
great distance from Earth, and the limits of technology, discovery of these
moons is relatively recent. Five of Neptune’s moons were discovered in
2002 and 2003. As technology continues to improve, it is likely that still
others will be found. In this section we will explore the possibility of
the existence of a Phi pattern in the location of these moons. Our explo-
ration was motivated by analogies that can be made between the Kuiper
belt (which begins in the orbit of Neptune) and the asteroid belt between
Mars and Jupiter discussed in the previous section.

Using the same approach as in the planetary data analysis, the distance
between Neptune and its closest moon, Naiad, was taken to be the unit
distance, and ratios of successive distances were calculated. The method
of least squares was used to calculate the linear regression line determined
by the moon numbers and corresponding distance ratios (normalized to
Naiad). The results are plotted via Microsoft Excel, and one-sigma error
bars are shown (see Figure 5). In the remainder of this section, we con-
tinue to iterate the technique until all outliers are eliminated, and predict
the locations of possible undiscovered moons. Finally, the accuracy of our
technique is analyzed by performing a regression analysis on the mean lu-
nar distances resulting from the individual steps of the iterative technique.

Figure 5
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Moon Moon # Distance (km) Ratio

Naiad 1 48,227 1.000000
Thalassa 2 50,075 1.038319
Despina 3 52,526 1.048947
Galatea 4 61,953 1.179473
Larissa 5 73,548 1.187158
Proteus 6 117,647 1.599595
Triton 7 354,760 3.015462
Nereid 8 5, 513,400 15.541211
Halimede 9 15, 730,000 2.853049
Psamathe 10 22, 430,000 1.425938
Sao 11 46, 700,000 1.050825
Laomedeia 12 46, 700,000 1.981332
Neso 13 48, 390,000 1.036188

Mean 2.612115
Std. Dev. 3.9447828

Table 3

Linear regression revealed that Nereid was an outlier. Using the regres-
sion equation

y = 0.1261x+ 1.7293,
we postulate the existence of an undiscovered moon between Triton and
Nereid (referred to as “Moon 1,” in Table 4 below). We then recalculate
the linear regression line and analyze the graph (see Figure 6).

Figure 6
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Moon Moon # Distance (km) Ratio

Naiad 1 48,227 1.000000
Thalassa 2 50,075 1.038319
Despina 3 52,526 1.048947
Galatea 4 61,953 1.179473
Larissa 5 73,548 1.187158
Proteus 6 117,647 1.599595
Triton 7 354,760 3.015462
Moon 1 8 971,368 2.738100
Nereid 9 5, 513,400 5.675911
Halimede 10 15, 730,000 2.853049
Psamathe 11 22, 430,000 1.425938
Sao 12 46, 700,000 1.050825
Laomedeia 13 46, 700,000 1.981332
Neso 14 48, 390,000 1.036188

Mean 2.612115
Std. Dev. 3.9447828

Table 4

Nereid continues to be an outlier. Using the new regression equation,
y = 0.0722x+ 1.3747, we postulate the existence of a second undiscov-
ered moon, “Moon 2,” between “Moon 1” and Nereid (see Table 5). We
then recalculate the linear regression line and analyze the graph (see Fig.
7).

Figure 7
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Moon Moon # Distance (km) Ratio

Naiad 1 48,227 1.000000
Thalassa 2 50,075 1.038319
Despina 3 52,526 1.048947
Galatea 4 61,953 1.179473
Larissa 5 73,548 1.187158
Proteus 6 117,647 1.599595
Triton 7 354,760 3.015462
Moon 1 8 971,368 2.738100
Moon 2 9 1, 966,535 2.024500
Nereid 10 5, 513,400 2.803611
Halimede 11 15, 730,000 2.853049
Psamathe 12 22, 430,000 1.425938
Sao 13 46, 700,000 1.050825
Laomedeia 14 46, 700,000 1.981332
Neso 15 48, 390,000 1.036188

Mean 1.732166
Std. Dev. 0.77263053

Table 5

After “Moon 2” is added, Triton, “Moon 1,” Nereid, and Halimede
appear to be outliers. Using the new regression equation, y = 0.0476x+
1.3516, we postulate the location and associated distance ratios of four
more undiscovered moons (see Table 6). At this point, there appear to be
no more outliers (see Figure 8). Hence, we end our predictions here, and
evaluate the accuracy of the technique by performing a regression analysis
on the iterative mean lunar distance data.
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Figure 8

Moon Moon # Distance (km) Ratio

Naiad 1 48,227 1.000000
Thalassa 2 50,075 1.038319
Despina 3 52,526 1.048947
Galatea 4 61,953 1.179473
Larissa 5 73,548 1.187158
Proteus 6 117,647 1.599595
Moon 3 7 193,976 1.648800
Triton 8 354,760 1.828883
Moon 4 9 614,586 1.732400
Moon 1 10 971,368 1.580524
Moon 2 11 1, 966,535 2.024500
Moon 5 12 3, 594,040 1.827600
Nereid 13 5, 513,400 1.534040
Moon 6 14 10, 338,728 1.8752
Halimede 15 15, 730,000 1.521464
Psamathe 16 22, 430,000 1.425938
Sao 17 46, 700,000 1.050825
Laomedeia 18 46, 700,000 1.981332
Neso 19 48, 390,000 1.036188

Mean 1.564620
Std. Dev. 0.31763458

Table 6
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Notice that Tables 3 through 6 show that with each iteration of our
data analysis technique, the mean distance ratio for the moons of Neptune
(normalized to Naiad) appears to be approaching Phi. Our results can be
fit by a power regression curve, with correlation of 0.9931, which is quite
accurate (see Table 7 and Figure 9).

Fibonacci # Fibonacci Ratio Mean of Mon Distance Ratio

1 1 2.612115
1 1 1.91645
2 2 1.732166
3 1.5 1.5642
5 1.666667
8 1.6

13 1.625
21 1.615385
34 1.619048
55 1.617647
89 1.618182

Table 7

Figure 9

Note that Columns 1 and 2 of Table 7 illustrate the convergence of
successive ratios of the Fibonacci numbers. Column 3 illustrates the mean
lunar distance trend resulting from the four iterations of our regression
analysis which were necessary to eliminate all lunar outliers. The ratios in
Column 3 appear to be converging to a number which is close to Phi.
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4. Analysis of Uranus

The next planet that was researched was Uranus, which has 5 ma-
jor satellites and 22 minor satellites. The data pertaining to the moons
of Uranus (see Table 8 at www.kappamuepsilon.org, the Kappa Mu Ep-
silon website) was collected by NASA (Williams, “Uranian Satellite Fact
Sheet”). As in the planetary and Neptune data analyses, distances of satel-
lites from Uranus were normalized to a unit distance equal to the dis-
tance between Uranus and its closest moon, Cordelia. The method of least
squares was used to calculate the linear regression line determined by the
moon numbers and corresponding distance ratios (normalized to Cordelia).
The results are plotted via Microsoft Excel, and one-sigma error bars are
shown (see Figure 10).

Figure 10

Calculation of the mean distance between Uranus and its moons did
not reveal an observable connection to Phi. However, linear regression of
the data shows a relationship between the distances, except for Francisco,
which is an outlier. Adding possible undiscovered satellites, as was done
in the case of Neptune (as well as the planetary data), would not be useful
here due to the large number of minor moons, as well as the magnitude of
the distance between these moons and the outlier, Francisco.

The moons of Uranus are classified as major or minor. The major
moons are Miranda, Ariel, Umbriel, Titania, and Oberon. They are con-
sidered to be major moons because their radii are significantly larger than
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the radii of the minor moons (Williams, “Uranus Fact Sheet”). Due to their
size, there is much more data available for the major moons. We decided
to reanalyze our data using only the major moons to see if there was a Phi
pattern, but we were unable to find one. In fact, without the minor moons,
the mean is further from Phi.

We also analyzed the rings of Uranus, normalizing the radii of the rings
to the radius of the equator of Uranus (see Table 9). Linear regression of
the data reveals a strong correlation between ring number and normalized
radius, and Phi lies within one standard deviation of the mean (see Figure
11).

Rings of Uranus Distance (km) Radius/Equator Radius

Equator of Uranus 25559 1
6 41837 1.636879377
5 42234 1.652412066
4 42571 1.665597246

Alpha 44718 1.749598967
Beta 45661 1.786493994
Eta 47176 1.845768614

Gamma 47627 1.863414062
Delta 48300 1.889745295

Lambda 50024 1.957197073
Epsilon 51149 2.00121288

Mean 1.732021099
Std. Dev. 0.271740742

Table 9

Figure 11
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Further research uncovered many articles which discussed a relation-
ship between the rings and moons of Uranus. The rings of Uranus are
formed by dust particles released by surrounding moons (Goudarzi). These
dust particles are formed when meteoric collisions occur with the moons.
The dust particles become trapped in the lunar orbit by surrounding forces
(“New Moons and Rings Found at Uranus”). In a 2007 MSNBC news
release, “Planet Uranus Has a Rare Blue Ring,” Goudarzi discusses the
discovery of a rare Blue Ring about Uranus, and its relationship to the
minor moon, Mab, which is believed to be the ring’s “companion moon.”
According to the article, dust particles formed by meteoric collisions were
released by Mab, and sent into the atmosphere to form this faint Blue Ring.
The Blue Ring follows the orbit of Mab, and its blue color is due to the
small size of the particles. On the other hand, the rings about Uranus which
are predominantly red were formed by larger particles that reflect red light
(Goudarzi). Further indications of a relationship between the moons and
rings of Uranus were also noted in a 2005 press release, “New Moons and
Rings Found at Uranus.” A pair of rings and two new moons were discov-
ered, due to the fact that one of the moons shared its orbit with a ring. This
set of rings was so far from the rest, that they are considered to be their
own system of rings.

The existence of a relationship between the rings and moons of Uranus
led us to search for a Phi pattern based on this connection. Noticing that
the mean of the ring data was an overestimate for Phi, while the mean of
the moon data was an underestimate, we examined the average of these
two estimates and found a much more accurate estimate for Phi:

Mean Moon Distance from Uranus (normalized to Cordelia) = 1.410173

Mean Radius of Rings (normalized to the equator of Uranus) = 1.7320210099

Mean of Moon and Ring Data = 1.57109705

The discovery of a Phi pattern which links the moons and rings of
Uranus is not surprising. As discussed earlier, the rings are composed
of particles from the moons, as in the small particles of the Blue Ring
which are attributed to Mab (Goudarzi). Scientists have also found that
the particles which comprise the rings of Uranus are being acted upon
by surrounding forces which are influenced by the mass and orbit of the
planet’s satellites.



Spring 2011 31

5. Analysis of Saturn

Finally, we investigated the moons of Saturn to determine whether or
not they revealed a Phi pattern. Data pertaining to the moons of Saturn and
their distances from Saturn was gathered from a NASA web site (Williams,
“Saturnian Satellite Fact”). As of July 2007, sixty moons of Saturn have
been identified. However, some of these discoveries are so recent that they
are still unnamed. Using Johnson’s study as a model, we set the distance
of Pan (Saturn’s nearest moon) from Saturn as the unit distance. We then
calculated successive ratios of distances, as in the Fibonacci sequence. The
data has been tabulated in Table 10, which can be found on the Kappa Mu
Epsilon website, www.kappamuepsilon.org.

As in Johnson’s work, we checked for the existence of a Phi pattern
within these ratios, by computing the mean and standard deviation. The
mean was calculated as 1.1246447, and the standard deviation was found
to be 0.3698122. Figure 12 shows the results of a regression analysis of
the raw data, along with error bars determined by the standard deviation.

Figure 12

Titan, Iapetus, and Kiviuq appear to be outliers, and the data does not
exhibit a readily identifiable Phi pattern. The average of the ratios is con-
siderably less than Phi. In addition, two of the major moons of Saturn
each have two Trojan moons which share the same orbit (Schombert). This
forces the ratio unnaturally to one in the corresponding sequence of ratios.
It was immediately apparent that the Trojan moons Calypso, Talesto, He-
lena, and Polydeuces, needed to be removed from the analysis. The list
of data can be further reduced by considering only the most significant
moons. Since the data was standardized to Pan, only those moons having
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mean density greater than or equal to that of Pan, 560km/m3 , were consid-
ered (Williams, “Saturnian Satellite Fact”). This is justifiable since many
of Saturn’s moons are actually large chunks that broke away from other
moons (Schombert). For example, Hyperion is the largest irregular shaped
moon observed, and is highly “pock-marked” (Schombert). This indicates
that pieces of Hyperion broke away and entered alternate orbits. Another
moon that shows signs of contributing to the formation of smaller moons
is Mimas. This moon has a large crater that indicates it was struck by an
asteroid or other cosmic object (Schombert). Therefore, the orbits of low
density moons really depend on the original moons at the time of impact.
Restricting the data in this way gives rise to the data in Table 11, below, as
well as the regression analysis in Figure 13. One-sigma error bars enable
us to identify outliers.

Moon Moon # Distance (km) Ratio of Distance

Pan 1 133,583 1.000000000
Epimetheus 2 151,422 1.133542442
Janus 3 151,472 1.000330203
Mimas 4 185,520 1.224780818
Enceladus 5 238,020 1.282988357
Tethys 6 294,660 1.237963196
Dione 7 377,400 1.280798208
Rhea 8 527,040 1.396502385
Titan 9 1, 221,830 2.318287037
Hyperion 10 1, 481,100 1.212198096
Iapetus 11 3, 561,300 2.404496658
Phoebe 12 12, 944,000 3.634627804

Mean Ratio 1.5938763
Std. Dev. 0.7923295

Table 11



Spring 2011 33

Figure 13

Saturn’s moons suggest a strong correlation to Phi, similar to the pattern
found in the planetary data. There were many factors to consider when
analyzing the moons of Saturn, including the Trojan moons and the mean
density of moons that were smaller than Pan.

6. Further Research

While working on any project one often wonders how the research can
be extended in the future. One question that was raised by our research
was whether or not a Phi pattern can be found in the moons of Jupiter.
Considering the fact that Jupiter also has rings, if a Phi pattern was discov-
ered, would it be similar to the pattern found in the moons of Saturn, or
would it be more similar to the pattern exhibited by Uranus?

Another way our work can be extended is to draw a connection with
Johannes Kepler’s Laws of Planetary Motion. Kepler’s Laws arose fre-
quently in our research, as well as in discussions with mathematicians
and scientists at various conferences. It would be interesting to see if our
work is similar to Kepler’s. For example, Kepler’s Third Law states that
(Period)2 = (Distance)3 (Morison and Penston 16), where the period is
how long a planet takes to revolve around the Sun, and the distance is
measured between the planet and the Sun. Using this information, Kepler
knew where to look in the night sky for a particular planet. This is simi-
lar to our work, in that we found where a planet or moon should be using
linear regression. Hopefully this project will lead others to discover new
information about our universe.

Another avenue that this research could follow is an in-depth study of
the asteroid belt between Mars and Jupiter. Could that have been a planet
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at one time? If so, what caused the planet’s destruction? There has also
been an asteroid belt discovered beyond Pluto, as well as a Plutiod. We
would be very interested to know if that data would support the Phi pattern
in our galaxy.

Finally, while researching the Milky Way, we learned about the classi-
fication of galaxies. For example, the Milky Way is a spiral class galaxy
which exhibits a Phi pattern. Do other spiral class galaxies also exhibit
a Phi pattern? Do the other two classifications, bar-spiral and elliptical,
reveal a different pattern altogether, or none at all? We are sure that the
quest for answers to these questions will lead to interesting discoveries in
the future.

7. Conclusion

Further study of planetary data led to a data analysis technique based
on linear regression which proved Johnson’s postulated existence of a Phi
pattern in the distance of the planets to the Sun (normalized to Mercury).
This technique was applied to data collected on three planets in our solar
system: Neptune, Uranus, and Saturn. It revealed a Phi pattern in all three
cases.

An analysis of Neptune’s satellite data led to the discovery of “missing”
moons that fit a Phi pattern. This was similar to the pattern found by
Johnson when he included Ceres (the largest asteroid in the asteroid belt
between Mars and Jupiter) in his calculations. The mean distance between
Neptune and its satellites (normalized to Naiad) was found to be close to
Phi when “missing” moons were included in the analysis.

The search for a Phi pattern in the moon and ring data of Uranus proved
to be tricky. Uranus has many moons, and our initial analysis produced a
mean satellite distance that seemed too low for a Phi ratio. Therefore, lin-
ear regression would not correct this. Instead it would make the ratio even
smaller. The ring data was taken into consideration, and at first it appeared
that this data would not help our research, since it produced an estimate
of Phi that was too high. However, information gained from the Voyager
Mission revealed that the rings of Uranus did not form at the same time
the moons did. The rings appear to be remnants of moons created prior
to the rings, either broken up by a high-velocity impact or torn apart by
gravitational effects. Therefore, a relationship exists between the satellite
and ring data of Uranus. The average of the mean distance between the
satellites and Uranus (normalized to Cordelia) and the mean of the radii of
the rings of Uranus (normalized to its equator) resulted in an estimate of
Phi.
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Saturn’s satellite data suggested that the mean ratio of the distance be-
tween Saturn and its moons (normalized to Pan) was an underestimate of
Phi. There were many factors to consider when analyzing the moons of
Saturn, including the Trojan moons and the mean density of moons that
were smaller than Pan. Once these moons were removed from our analy-
sis, a Phi pattern was revealed.

The results of our research uncovered further examples of Phi patterns
in nature and beyond. These patterns are linked to the evolution of our
solar system. We believe that similar patterns arise in other systems, and
encourage future research in this area.
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