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Extract

The Beal Conjecture, Ax + By = Cz, is analyzed as of a proof based on selfsame multiples through
addition and the presentation of counterexamples. The Beal Conjecture requests the presentation
of counterexamples based upon selfsame multiplication, when in fact such counterexamples do
not exist. Counterexamples do exist through selfsame addition Ax + By = z(C), where it is possible
to present relations of equivalency that have terms in positive integers with no common prime
factor. The analysis in this essay presents an explanation of the equation based upon its
stipulated algebraic notation.

The Beal Conjecture:   Ax + By = Cz

The conjecture Ax + By = Cz made by Mr. Andrew Beal is mainly
concerned with the common prime factor for positive integer terms and their
exponents. The algebraic notation determines the procedural method of

selfsame multiplication [ x
n

  ] of the terms in order to obtain the relation of
equivalency in the cited equation. However, we shall consider the procedural
step of obtaining the products of the terms through selfsame addition. The Beal
Conjecture may be approached and resolved through simple addition. In our
view, the algebraic notation of the terms and their exponents obfuscates what is
actually happening within the equation itself.

The Beal Conjecture requires positive integers in the terms [A, B, C] and
in the exponents [x, y, z] of the equation (the latter whose value must be greater
than 2). The products of the terms must reflect the selfsame multiplication of the
terms in whole numbers or positive integers.  Obviously, no fractional
expressions are to appear in any of the three terms or three exponents of the
equation. And, the most significant part of the conjecture affirms the necessity
that the terms share a common prime divisor. Or, to the contrary, one must
present counterexamples.
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The terms of the resolutions cited by Professor Mauldin contain terms that
are multiples of the primes listed for the common prime divisor. In other words,
the terms in the cited examples are either prime numbers or multiples of that
particular prime number. Therefore, the redundancy of the statement of
equivalency made by each equation is obvious. For example:

335 + 665 = 336  = Multiples of 11 plus multiples of 11 equal multiples of 11.

More exactly: selfsame multiples of 11 plus selfsame multiples of 11 equal
selfsame multiples of 11.

345 + 514 = 854  = Multiples of 17 plus multiples of 17 equal multiples of 17.

More exactly: selfsame multiples of 17 plus selfsame multiples of 17 equal
selfsame multiples of 17.

More specifically, and listed respectively as above:

3557763 [11s]  plus 113848416 [11s]  equal 117406179 [11s]

2672672 [17s] plus 397953 [17s]  equal 3070625 [17s]

Hence, the cited multiples necessarily have a common prime divisor, as
each term is a multiple of that particular common prime divisor. These same
relationships may be viewed inversely as:

11 [3557763s]  plus 11 [113848416s]  equal 11 [117406179s]

17 [2672672s]  plus 17 [397953s]        equal 17 [3070625s]

However, such a view denies the algebraic notation as expressed in terms and
exponents (powers).

The equation begins with the terms and the exponents of selfsame
multiplication [ xn ], but the equation ends with the elementary procedure of
adding together the sum of the two products of two of the terms in a comparison
of equivalency with the third term. The procedure of addition mediates the
terms/exponents and the final relation of equivalency.

When such equations exist that have no common prime divisor, then, the
terms shall reflect multiples of different primes (or co-primes), inasmuch as a
prime is divisible only by 1 and itself without a remainder, and co-primes are
divisible only by 1. The third term in a co-prime equation is irrelevant, be it
another prime number or a composite number, inasmuch as the presence of two
prime numbers (i.e., a co-prime) determines the absence of a common prime
factor for the three terms of the equation. When the concept of selfsame
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Mentally, one may think of the terms and their exponents as the procedure
of selfsame multiplication as in  7 • 7 • 7 • 7 = 2401. In selfsame multiplication,
in this example, the number seven represents both the multiplicand and the
multiplier. This mental visualization, although often employed, does not reflect
what is happening, for what occurs in the computation is: 7 • 7 =  49  • 7 =  343  •
7 =  2401. However, when we view the detail in the multiplication procedure of
selfsame multiplication, we see that the multiplier and the multiplicand change in
nature with each step. At the level of the first step, seven is both the multiplicand
and the multiplier (7•7).  At the level of the second step, the number 49 becomes
the multiplier and seven is the multiplicand, while at the level of the third step, the
number 343 becomes the multiplier and seven the multiplicand.

However, in this case, we simply say that the number/term [ x, 7 ], is being
multiplied by itself a certain number of times [ n or 4], where seven is the
multiplicand and four is the multiplier in this case [7•7•7•7]. When actually the
number seven is being multiplied by itself only once and, then after that, it is
multiplied against the products of each subsequent multiplication step.

Language and notation are important, because they can hide reality from
us, where we take for granted measures and procedures that may in fact vary.
Even the previously cited procedure may be too abstract, since one is actually
treating the selfsame multiplication of 7, [ 49, 343, 2401], which does not cover
all of the selfsame multiples of seven for that range [1 through 2401]. More
comprehensive is the concept of selfsame multiples through addition, [7, 14,
21, 28, 35, 42, 49, 56, 63, 70, 77, 84, ...n2401], which long preceded the concept
of symbolic multiplication in the algebraic notation used today [ xn ].

Obviously, selfsame multiplication represents only a few multiples within
the complete range of selfsame addition of any given number. The selfsame
addition of 7 plus 7 plus 7 plus 7 plus 7 plus... =  2401 represents the complete
number of multiples of seven within the range of 1 through 2401. In other words,
there are three-hundred-and-forty-three 7s in the numbers 1 through 2401.
One may view the range inversely as seven 343s, but then the algebraic
notation of terms and exponents is no longer adequate for expressing this
particular set of multiples. The algebraic notation of terms and exponents of
selfsame multiples within Fermat's Last Theorem and the Beal Conjecture
reference certain limited selfsame multiples through multiplication within the
complete range of selfsame multiples through addition. [Consult the initial ranges
of the numbers in the charts in the Addendum, where one may see the limited
number of selfsame multiples through multiplication within the more complete
range of selfsame multiples through addition.]

Due to the history of mathematical and algebraic notation, we generally no
longer think according to selfsame multiples through addition; nor do we speak in
such terms; nor are many textbooks written in this manner. These are levels that
are considered to have been long ago surpassed in mathematics and in the
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